
Technische Universität München WS 2017/18
Institut für Informatik
Theoretical Computer Science

Fundamental Algorithms 2 - Solution Examples
Exercise 1 (Real Complexity)
Suppose HomeComputer is a machine that can perform 109 operations per second. Consider that we have
five different algorithms for a specific problem. For each algorithm i, we know the number of operations
Ti(n) it will perform on a problem of size n:

T1(n) = 6 000 000 · n ∈ O(n)
T2(n) = 60 000 · n ln n ∈ O(n ln n)
T3(n) = 0.003 · n2 ∈ O(n2)
T4(n) = 10−6 · n3 ∈ O(n3)
T5(n) = 10−18 · 2n ∈ O(2n)

For each algorithm compute the size nmax of the largest problem the respective algorithm can solve within 1
second (1 minute, 1 hour, . . .). Enter the maximal problem sizes into the following table:

1 second 1 minute 1 hour 1 day 1 month (30 d) 1 year (365 d)
nmax(T1) 166 10 000 600 000 1.44 · 107 4.32 · 108 5.26 · 109

nmax(T2) 2 169 87 847 3.95 · 106 7.91 · 107 2.01 · 109 2.20 · 1010

nmax(T3) 577 350 4.47 · 106 3.46 · 107 1.69 · 108 9.29 · 108 3.24 · 109

nmax(T4) 100 000 391 486 1 53 · 106 4.42 · 106 1.37 · 107 3.15 · 107

nmax(T5) 89 95 101 106 110 114

Exercise 2 (MergeSort)
Compute the number of comparisons between array elements that will be performed by MergeSort on an
array of size n = 2k, k ∈ N in the best case, i.e., compute this number exactly.

Solution:
In MergeSort, comparisons are only performed during the Merge-step. In the best case, the first element
of one partition will be compared to (and found to be larger than) all n

2 elements of the other partition.
After copying these n

2 elements of the other partition into the array, the elements of the first partitions will
be copied to the array without performing any comparison. Thus, in the best case, Merge will require n

2
comparisons.
With n = 2k, we get the following recurrence for the number C(n) of comparisons in the best case:

C(n) = C

(
n

2

)
+ C

(
n

2

)
+ n

2 = 2 · C
(

n

2

)
+ n

2

Of course, C(1) = 0. We try to solve this recurrence by substitution, and guess

C(n) := an ln2 n + b

as the solution. For n = 1, we get:

C(1) = a ln2 1 + b = b = 0 ⇔ b = 0

1



And for n > 1:

an ln2 n = C(n) = 2 · C
(

n

2

)
+ n

2

an ln2 n = 2
(

a
n

2 ln2
n

2

)
+ n

2

an ln2 n = 2
(

a
n

2 (ln2 n− 1)
)

+ n

2
an ln2 n = an ln2 n− an + n

2
0 = −an + n

2
a = 1

2

Hence, in the best case, MergeSort will require n
2 ln2 n comparisons between array elements (for n =

2k, k ∈ N).

Exercise 3 (Sorting)
Prove or disprove the following statement: If we sort each row of a matrix, and, after that, sort each column
of the matrix, the rows of the matrix will still be sorted afterwards.

Solution:
Let (aij) be the matrix after the entire sorting procedure. Without loss of generality, we will assume that
the sorting is done is ascending order. Our proof will be by contradiction. Assume that there is a row l that
is not in sorted order, i.e. there are two column indices j < k such that alj > alk:

As the k-th column of the matrix is sorted, it contains at least l elements that are ≤ alk (alk included). To
each of these l elements belongs an element of the j-th column that was in the same line of the matrix before
the columns where sorted. These l elements are all smaller or equal to their corresponding element in the
k-th column, because the lines of the matrix where already sorted at this time. Hence, these l elements of
the j-th column are all ≤ alk, and therefore < alj .
Consequently, there are at least l elements in column j that are that are smaller than alj . Therefore, in

column j, at least one element smaller than alj has to be placed below alj . This means that the j-th column
can not be in sorted order, which contradicts our assumption.

2


